
Journal of Engineering Mathematics 45: 227–245, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

On the spiking stages in deep transition and unsteady separation

ROBERT I. BOWLES1, CHRISTOPHER DAVIES2 and FRANK T. SMITH1

1Department of Mathematics, University College London, Gower Street, London WC1E6BT, UK
2School of Mathematics, Cardiff University, P.O. Box 926, Cardiff, CF24 4YH, UK

Received 24 November 2001; accepted in revised form 22 August 2002

Abstract. Numerical simulations of a large-amplitude nonlinear two-dimensional train of Tollmien-Schlichting
waves are performed first and show the development of short-scaled structures or spikes. A careful description
of the spiking process and its subsequent development is given describing the generation of localized maxima
in the streamwise pressure distribution and associated vortices, spikes in a perturbation velocity trace and the
emergence of strong wall-normal pressure gradients. A high-Reynolds-number asymptotic theory has previously
been developed by two of the authors which aims to describe this spiking process. The current work is the first to
give a comparison between this theory and planar Navier-Stokes computations. We give a brief description of the
theory showing how normal pressure gradients become active and their role in the generation of the streamwise
pressure distribution and its subsequent effects such as vortex generation and wall-layer vorticity eruptions. The
presentation is given with close qualitative reference to the simulations, so giving credence to the relevance of the
theoretical account and an interpretation of that account in physical terms. The comparison, although primarily
qualitative, is successful in that it is possible to identify the physical processes highlighted by the theory in the
computations, so clarifying the complex fluid motions and suggesting directions for further research. The paper
concludes with firstly a discussion of how the results of the simulations and the theory could be used to give an
understanding of similar processes seen in unsteady planar separation and secondly their relevance to the strongly
three-dimensional processes at work in deep transition experiments.
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1. Introduction

The formation of ‘spikes’, short-scaled and large-amplitude events in a trace of disturbance
velocity against time, is a fairly universal phenomenon in transition of wall-bounded shear
flows to turbulence at medium-to-high Reynolds numbers. They herald the start of ‘late’ or
‘deep’ transition, where linear or weakly nonlinear descriptions of the flow fail. They have
been seen in experimental and computational studies of boundary-layer transition, both in the
K and N-type routes, and in channel and pipe flows [1–4].

Careful experiments and direct numerical simulations of the transition process have shown
several physical phenomena are associated with the spikes [5,2]. Firstly they have a stream-
wise length-scale significantly shorter than the wave upon which they ride and they often
occur at the head of a downstream-pointing �-shaped vortex structure. Secondly, between the
legs of this � vortex the spanwise vorticity is concentrated in a local high shear layer which
separates the slower moving flow, brought up from near the wall by the circulation about the
legs, from the faster flow further from the wall. At the head of the vortex this shear layer
and the vorticity in the legs are seen to merge. Thirdly this vorticity is observed to roll up
to form vortices with regions of recirculating flow when viewed in a frame traveling with
the disturbance. Associated with each vortex is a localized pressure minimum and regions
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where the wall-normal velocity changes in sign. Such vortex generation is also seen in dy-
namic stall and unsteady separation [6]. Fourthly, these intense vortices develop into strongly
three-dimensional Omega-(�)shaped vortices which travel downstream relative to the wave,
retaining their structure. Interaction between these vortices and with the wall soon leads to
breakdown to turbulence.

A theoretical approach that has managed to describe a spiking process and reproduce some
of the phenomena listed above is that developed in [7–12]. Its success is in terms of the
theory’s self-consistency, its providing of physical insight, e.g. through scales, and its broad
agreement with direct numerical simulations and experiments on three-dimensional flows. The
last aspect is particularly important; for instance see the comparisons in [8] with [13]’s exper-
iments concerning the appearance of the first spike. The theoretical approach above considers
the flow along the centreline of the �-vortex, the peak plane. Indeed, while the real flows in
deep transition are certainly three-dimensional and possibly include such three-dimensional
phenomena as the Crowe mechanism for vortex line instability, some of the main events would
seem to be locally two-dimensional. In that spirit, the current paper first presents a numerical
solution of a large-amplitude two-dimensional wavetrain of nonlinear Tollmien-Schlichting
(TS) waves in a parallelized boundary layer and second interprets the results in terms of
the theoretical description. The aim is thus to combine practical asymptotics with careful
numerical simulation and to compare the two. This comparison is predominantly qualitative
but is successful in identifying the physical processes predicted to be active at asymptotically
large Reynolds number in the finite-Reynolds-number computations. In turn new directions
for theoretical research are suggested. The novel contribution here includes this comparison
as well as recent theoretical and numerical developments.

From the theoretical viewpoint there are strong similarities between the development of
the two-dimensional nonlinear wave flow studied here and the process of unsteady planar
boundary-layer separation. Indeed, the flow structures that are seen in our current simulations
are very similar to those observed in the computations of vortex-driven separation carried out
by [14, 15]. The TS waves generated provoke large regions of separated flow and to some
extent the wave train can be viewed as a string of travelling vortices moving downstream
within a boundary layer. This point is discussed further in Section 5.

2. Numerical methods

Reference [18] derives a new velocity-vorticity formulation of the Navier-Stokes equations
that can be applied in highly efficient numerical simulations of three-dimensional boundary-
layer disturbance evolution and control. The numerical results described in the present pa-
per were obtained using a code based upon a two-dimensional version of the new velocity-
vorticity formulation. We restrict ourselves here to providing only a very brief account of
the governing equations and their numerical discretization. Further details can be found else-
where, for a variety of applications that involve compliant surfaces, interactive MEMS de-
vices, mean-flow non-parallelism, absolute instability and nonlinear waves [16–26].

2.1. GOVERNING EQUATIONS

We take as our governing equations the two-dimensional Navier-Stokes equations for �U =
(U, V ) with U and V , respectively, the streamwise and wall-normal velocity components and
P the pressure.
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�Ut + �U · ∇ �U = −∇P + ∇2 �U/R, (1)

∇ · �U = 0. (2)

In this formulation the streamwise and wall-normal distances x and y have been nondi-
mensionalized using the boundary-layer displacement thickness δ, the velocities using the
free-stream velocity U∞ and the time t with the ratio δ/U∞. The Reynolds number is R =
δU∞/ν, where ν is the kinematic viscosity of the fluid. The boundary conditions are �U = 0
on the wall y = 0 and �U → (1, 0) as y → ∞.

If we let u, v denote streamwise and wall-normal velocity components corresponding to a
two-dimensional deviation from a parallel Blasius flow �U = (Ub(y), 0), and let ω denote the
associated vorticity perturbation, then (1)–(2) can be cast in the form

∂ω

∂t
+ Ub ∂ω

∂x
+ ∂(uω)

∂x
+ ∂(vω)

∂y
+ vU ′′

b = 1

R
∇2ω + 1

R
U ′′′
b , (3)

∇2v = −∂ω
∂x

, (4)

u = −
∫ ∞

y

(
ω + ∂v

∂x

)
dy . (5)

It may be noted that the streamwise perturbation velocity component u is defined explicitly
in terms of the wall-normal component v and the vorticity perturbation ω. Thus u may be
eliminated from the vorticity transport equation, leaving a system of two partial differential
equations for the two unknowns ω, v. For the parallelized simulations described herein, we
omitted the final term 1/R U ′′′

b from the right-hand side of the transport equation. This term
would otherwise act as a source for the generation of a non-parallel base flow. There would
be no numerical difficulties if the non-parallel source term was retained, as was done in some
related, lower amplitude, simulations conducted by [25, 26], using essentially the same tech-
nique as we used for the present simulations. We have chosen here to consider a parallel base
flow only for the purposes of simplicity, specifically to avoid complications in the comparison
of the short-scaled shock structure with the theoretical predictions which might arise due the
spatial variation in stability properties of the base flow.

Disturbances are generated using a localized suction/blowing strip centred at a computa-
tionally convenient streamwise location x = xs on the wall surface y = 0. Thus we impose the
condition v(x, 0, t) = v̄(x−xs, t), for some localized time-periodic wall-normal velocity dis-
tribution v̄, which is switched on in a smooth fashion at t = 0. We take v̄(−x, t) = −v̄(x, t),
to ensure that there is no net mass influx, and v̄(x, t) = 0 for |x| > l, where the half-width l of
the suction/blowing slot is chosen to be shorter, but comparable to, the wavelength of the TS
disturbance wave that is to be generated. The no-slip condition u(x, 0, t) = 0 is imposed at all
streamwise locations. Using the definition of u given above in Equation (5), we can translate
this condition into a fully-equivalent integral constraint on the vorticity∫ ∞

0
ω dy = −

∫ ∞

0

∂v

∂x
dy . (6)

The above integral constraint can then be applied in the discretized version of the vorticity
transport equation to provide a direct link between the evolution of the vorticity and the no-slip
condition. We thus avoid any form of artificial wall-vorticity boundary condition.
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At the inflow boundary x = xin of the computational domain, the null perturbation con-
ditions v = ω = 0 are imposed, whilst at the outflow x = xout we use wavelike conditions
which allow small-amplitude disturbances to convect out of the domain without any spurious
reflection. In practice, because we considered only two-dimensional disturbances, it was pos-
sible to conduct our simulations using a computational domain of sufficient streamwise extent
to ensure that the disturbance amplitude remained negligible at the outflow for the evolution
times of interest. In other words, the physical behaviour that we were interested in studying
could be observed well before any significant disturbance reached the vicinity of the outflow.

2.2. NUMERICAL DISCRETIZATION

Our numerical discretization scheme is essentially a two-dimensional, nonlinear, version of a
three-dimensional, linearized, discretization scheme described more fully in [18]. The main
features of the numerical scheme that we adopted are as follows: (i) The streamwise variation
is discretized using fourth-order accurate compact finite-differences. (ii) Spectral Chebyshev
expansions are used for the discretization in the wall-normal direction. A co-ordinate trans-
formation is employed to map the semi-infinite physical domain onto a finite computational
domain. (iii) The temporal discretization of the vorticity transport equation is implicit for the
viscous term that involves a wall-normal second derivative, but is explicit for all other terms.
The integral constraint on the vorticity, which is used to impose the no-slip condition, is also
treated in an explicit fashion. (iv) The wall-normal discretization is formulated so as to involve
only pentadiagonal matrix operations. This facilitates the direct solution of the discretized
vorticity transport equation using a highly efficient Thomas algorithm. The Poisson equation
is also solved using a direct method, by combining the Thomas algorithm with a fast sine-
transform along the streamwise direction. (See, for example, [27] for an account of a similar
direct solution method.) (v) A pseudo-spectral transform technique is used to compute the
nonlinear and other product terms that appear in the vorticity transport equation.

We implemented a high-order compact filtering scheme along the streamwise direction, to
remove unphysical oscillations at the grid-scale. It was found that, for simulations involving
strongly nonlinear disturbances, low-amplitude streamwise grid-scale oscillations could per-
sist when an unfiltered scheme was utilised with a computationally feasible time-step. Checks
were made to verify that the results obtained from simulations conducted with and without
filtering differed only with respect to the level of numerical noise at the streamwise grid-
scale. Grid-refinement studies were also undertaken to provide evidence that the grid-scale
oscillations were purely numerical in origin. The filtering scheme that we adopted is similar
to schemes that have been employed, successfully, in direct numerical simulations by other
investigators. (A careful discussion of the origin and removal of grid-scale oscillations can be
found in reference [27], which also contains a more extensive listing of earlier studies.)

The two-dimensional numerical simulation code developed using the discretization scheme
outlined above has been extensively tested and validated. (See the references listed at the be-
ginning of this section.) References [25, 26] present details of code validation for the cases of
linear and comparatively low amplitude nonlinear disturbance evolution in a Blasius boundary
layer that are particularly pertinent to our present investigations.



On the spiking stages in deep transition and unsteady separation 231

(a) Wall pressure, P(x, 0). (b) Wall Vorticity �(x, 0).

Figure 1. The wavetrain of TS waves at R = 2500. The forcing is centred about x = 160.

(a) Total vorticity �(x, y) and vertical velocity v.
Values of � are given by the contours in the range
0·05 (white) to 0·8 (black) in steps of 0·05 with the
additional zero contour dashed. Values of v are rep-
resented by the shading separated by contours with
values −0·25 (darkest) to 0·25 (lightest) in steps of
0·05. Again the zero contour is dashed.

(b) Total vorticity �(x, y) and normal pressure gra-
dient Py(x, y).� is given as in Figure 2(a) whilst Py
is represented by the shading separated by contours
with values −0·002 (darkest) to 0·005 (lightest) in
steps of 0·001. The zero line is dashed.

(c) Wall vorticity (solid), wall pressure 500P(x, 0)
(dotted) and pressure gradient 500Px(x, 0) (dashed)
over three periods.

Figure 2. The early development of the spike around x = 315 at R = 2500.
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3. Simulation results

The lowest Reynolds number, based on the boundary-layer displacement thickness, for which
we present results isR = 2500. A wavetrain of nonlinear TS waves is generated by the forcing
at x = xs = 160 as is indicated by the wall-pressure, P(x, 0), and total vorticity, �(x, 0),
values in Figures 1(a) and 1(b). Here� = U ′

b +ω. The amplitude of these waves is large as is
indicated by the occurrence of flow separation (�(x, 0) < 0) which is first visible at x = 290.
The waves also exhibit the nonlinear features of relatively short pressure minimum separated
by longer-scaled maximum as seen in the computations of [25] and broadly consistent with
the asymptotic theory of [28]. We see the first indications of a short-scaled event, which is not
explained by this theory, occurring in the wall vorticity trace in the increasingly large positive
spike just upstream of the regions of separated flow downstream from x = 280. We note that
this occurs at a position where the local pressure gradient is favourable. Further downstream
at x = 570, 615, 655 we see the development of finer structure within these events. We now
turn to the details of the flow features in the vicinity of these events, which we shall refer to as
‘spikes’, during the early stages of their development. Figure 2(a) shows the total vorticity and
the vertical velocity over approximately a wavelength around x = 315. The boundary-layer
edge is at approximately y = 3 so that the figures show structures that develop relatively close
to the wall near y = 0·5. The large wave-amplitudes force separated flow in regions of adverse
pressure gradient. These act as sources of decreased vorticity through the equation

Px |y=0 = R−1�y |y=0, (7)

which may be derived from (1). In a frame traveling downstream with the wave, the wall
moves upstream carrying this vorticity upstream away from its site of generation. As the flow
develops, these reduced values are forced rapidly upwards in a primary eruption caused by an
region of increased positive vertical velocity which develops relatively close to the wall just
upstream of the separation. This is visible at x = 315, y = 0·5 and is also associated with a
locally increasing favourable pressure gradient in its vicinity and the generation of increased
values of vorticity in a region even closer to the wall situated just below the maximum in
vertical velocity and visible in Figure 2(a) around x = 314. The increase can also be seen
in Figure 2(c) which shows the shortening of the scale of the structure in addition to the
increasing amplitude and the associated increases in the pressure gradient and hence through
(7) the wall vorticity. Figure 2(b) shows shaded contours of the wall-normal pressure gradient
Py together with the same contour lines of vorticity as in Figure 2(a) for reference.

The later development of the structure is seen in Figure 3. The figure is in fact taken from
a different calculation performed with greater resolution and a larger amplitude forcing but
the structures obtained here are typical of those seen around x = 600 in Figure 1. The
separation region extends from x = 447 to 454 approximately and the separation or primary
vortex, visible in Figure 3(a) has a width comparable with the boundary-layer thickness. On
the upstream side of this we see a secondary vortex in the process of formation, viewed in
close up in Figures 3(c)-(e). Associated with that new vortex is a new region of downward
velocity at x = 442, y = 0·75 splitting the original region of upward flow. Although having
its origins in two-dimensional dynamics, this process resembles closely the splitting of the
shear layer seen in the three-dimensional computations of boundary-layer transition by [5] as
the �-shaped vortices begin to develop. The downward velocity advects the reduced values
of vorticity towards the wall before it is carried upwards once more around the vortex that
is so generated and which contains higher values of vorticity (Figure 3(a)). This originated
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(a) Total vorticity �(x, y) and vertical velocity v.
Values of � are given by the contours in the range
−0·4 (white) to 0·8 (black) in steps of 0·1 with the
additional zero contour dashed. Values of v are rep-
resented by the shading separated by contours with
values −0·1 (darkest) to 0·1 (lightest) in steps of
0·02. Again the zero contour is dashed.

(b) Wall vorticity (solid), wall pressure 100P(x, 0)
(dotted) and pressure gradient 100Px(x, 0) (dashed).

(c) Total vorticity �, represented as in Figure 3(a)
and v represented by the shading separated by con-
tours with values −0·05 (darkest) to 0·1 (lightest) in
steps of 0·01. The zero lines are dashed.

(d) Total vorticity �, represented as in Figure 3(a)
and normal pressure gradient Py represented by the
shading separated by contours with values −0·01
(darkest) to 0·01 (lightest) in steps of 0·002. The zero
lines are dashed.

(e) Total vorticity �, represented as in Figure 3(a)
and perturbation streamwise velocity u represented
by the shading separated by contours with values
−0·2 (darkest) to 0·2 (lightest) in steps of 0·04.

Figure 3. The subsequent development of the spike at R = 2500. Figures 3(c–e) show the structures in Figure 3(a)

in more detail.
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away from the wall and has now been encircled by vorticity which came from closer to the
wall and further downstream. The region of new downward velocity and the vortex position is
correlated with the localized pressure maximum that appears at x = 442 (Figure 3(b)).

Figure 3(d) shows the normal pressure gradient Py at this stage. Its value has grown to be
comparable with the streamwise gradient. The triangular pattern with vertices at x = 441·5,
y = 0·5 and x = 444, y = 0·5 (minima) and x = 442·5, y = 0·8 (maximum) is typical at this
stage. The decay away from the wall of these increased values of Py occurs between y = 1
and 1·7 approximately. The minimum extending above y = 2 at x = 443 merges with the
minimum equivalent to that at x = 313 in Figure 2(b) and may be identified with the basic
wave. It and its neighbouring maximum are caused by the streamline curvature which may
be identified in the behaviour of the vorticity contours across the bulk of the boundary-layer
in Figure 2(b). Similar effects, repeated on smaller scales, are responsible for the triangular
pattern, which is also seen in 2(b). The zero contour passes through the centre of the secondary
vortex so indicating a pressure minimum there. Reference [1] used the development of pres-
sure minimum as characteristics of vortex formation in their computational study of transition
in a channel flow.

The perturbation streamwise velocity u is illustrated in Figure 3(e) and shows the negative
values that occur at x = 443, y = 1·5 upstream of the expected negative values to be found
in the separation vortex just downstream of this figure. These would show up as negative
spikes in a trace of perturbation velocity against time and their origin is clearly caused by
the reduced vorticity brought up from the wall. In contrast the similar spikes seen in exper-
imental and computational studies of the three dimensional transition process are generally
understood to be associated with the reduced streamwise velocities found in the centre of the
�-shaped vortices. There are regions of increased values close to the wall at y = 0·25 which
are generated by the positive values of vorticity generated there as described above.

We also ran simulations at R = 104 and R = 105 and if the Reynolds number is high
enough the process of secondary vortex generation caused by the generation of pressure
maximum/minimum pairs is repeated. The results illustrated in Figure 4 are from a simulation
with similar forcing to that described above but with R = 105. At these Reynolds numbers the
flow development is so rapid that a recognisable wavetrain does not have time to develop and
we are then concerned with a form of by-pass transition and a large-amplitude wavepacket.
In this packet there is a single large separation region with the two smaller vortices on its
upstream side seen clearly in Figure 4(a). A study of the wall pressure in the vicinity of
these vortices (Figure 4(b)) shows a series of pressure maxima in the range x = 294 to
299. We will consider the complicated behaviour seen around x = 298·5 below. The wall
vorticity values also contain maxima reflecting the pressure distribution. Figures 4(c–e) show
that this repetition in the streamwise pressure gradient leads to a corresponding repetition in
the structures present in Figure 3 in the plots of v, Py and u. We would expect to see a second
negative spike in a time trace of u for example. We can also see at x = 294·5, y = 0·6
the first stages in the generation of a third region of downwards velocity indicating the initial
stages of development of a third secondary vortex. Indeed in similar simulations with coarser
resolutions such a third vortex was generated. We emphasise that we believe the data shown
in Figure 4 to be grid independent. Presumably a further separation is possible at still higher
Reynolds numbers or larger amplitudes due to the large adverse pressure gradients that are
generated.

At a Reynolds number of 2500 these additional vortices are not seen. Figure 5 illustrates
the next stage of development at these lower values by considering an x-station further down-
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(a) Total vorticity �(x, y) and vertical velocity v.
Values of � are given by the contours in the range
−0·4 (white) to 0·6 (black) in steps of 0·05 with the
zero contour dashed. Values of v are represented by
the shading separated by contours with values −0·04
(darkest) to 0·04 (lightest) in steps of 0·005. Again
the zero contour is dashed.

(b) Wall vorticity (solid), wall pressure 300P(x, 0)
(dotted) and pressure gradient 300Px(x, 0) (dashed).

(c) Total vorticity �, represented as in Figure 4(a)
and normal velocity v represented by the shading
separated by contours with values −0·04 (darkest)
to 0·04 (lightest) in steps of 0·01. The zero contours
are dashed.

(d) Total vorticity �, represented as in Figure 4(a)
and normal pressure gradient Py represented by the
shading separated by contours with values −0·0018
(darkest) to 0·0018 (lightest) in steps of 0·0006. The
zero contour is dashed.

(e) Total vorticity �, represented as in Figure 4(a)
and perturbation streamwise velocity u represented
by the shading separated by contours with values
−0·05 (darkest) to 0·15 (lightest) in steps of 0·05.

Figure 4. The subsequent development of the spike at R = 105. Figures 4(b–e) show the structures in Figure 4(a)

in more detail.



236 R. I. Bowles et al.

(a) Total vorticity �(x, y) and vertical velocity v.
Values of � are given by the contours in the range
−0·4 (white) to 0·6 (black) in steps of 0·05 with the
zero contour dashed. Values of v are represented by
the shading separated by contours with values −0·1
(darkest) to 0·1 (lightest) in steps of 0·01. Again the
zero contour is dashed.

(b) Wall vorticity (solid), wall pressure 100P(x, 0)
(dotted) and pressure gradient 100Px(x, 0) (dashed).

(c) Total vorticity � and normal velocity v, repre-
sented as in Figure 5(a).

(d) Total vorticity �, represented as in Figure 5(a)
and normal pressure gradient Py represented by the
shading separated by contours with values −0·03
(darkest) to 0·1 (lightest) in steps of 0·00133. The
zero line is dashed.

Figure 5. Secondary eruptions at R = 2500. Figures 5(b–d) show the structures in 5(a) in more detail.

stream around x = 535. We see that the secondary vortex has grown significantly by this
stage but also there is evidence of a secondary eruption of vorticity from close to the wall at
x = 534 − 5, visible in Figure 5(a) and viewed in close up in Figures 5(b–d). The secondary
eruption is slightly different from the first in that it is of increased vorticity, generated at the
wall as a result of the large favourable pressure gradient erupting into the region of decreased
vorticity being brought in from downstream. However, although of course at a smaller scale
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Figure 6. The disturbance structure close to the wall during spike formation as R → ∞. Here ε = R−1/4 and the
boundary layer is of thickness O(1). The wall layer I is of thickness O(ε) and length O(ε−1), the length scale of
the TS wave (which travels with speed O(ε)) before spiking. This basic structure breaks down to shorter scaled
disturbances of length O(ε1/2) which decay over a normal scale, II, also of O(ε1/2). The dynamics of the critical
layer, III, situated at the velocity profile’s inflection point is important in the formation of the secondary vortices
but the viscous wall layer, IV, is essentially passive, at least in the initial stages. See [9].

than the first, it is broadly similar as may be seen in the pattern of localised regions of increased
magnitude of v and Py values. It is driven by the significant adverse pressure gradient now
present on the downstream edge of the secondary vortex. It seems clear that this secondary
eruption is responsible for the wavepacket-like signal in the wall pressure gradient at this
station and that a similar, although incipient, eruption is the cause of the similar signal in
Figure 4(b) at x = 298·5.

The simulation continued to run for times significantly later than that considered in Fig-
ure 5 and there were several repeated secondary eruptions separated by intervals in which the
basic structure was reestablished. The details of this late stage of the flow development is not
considered in this paper but we did look at simulations with increased numerical resolutions
which reproduced these secondary eruptions both in magnitude and broadly in phase and we
feel that this is strong evidence of the accuracy and power of the numerical approach used.
Recall that we are accurately tracing the development of a short-scaled flow close to the wall
which develops in a wavetrain of TS waves which is of the order of 200 times as long.

4. The theoretical description of vortex generation and comparisons with the
simulations

At medium-to-large Reynolds numbers the TS waves, which have wavelengths larger than the
boundary-layer thickness, are well described, in both the two and three-dimensional cases,
by the unsteady triple-deck equations or interactive-boundary-layer (IBL) equations ([29] and
so on). These are a nonlinear set of equations derived from the Navier-Stokes equations and
capture the interplay between the action of viscosity and inertia near the wall, where the flow is
governed by the boundary-layer equations but with an unknown pressure, P̃ , produced by the
reaction of the inviscid flow just outside the boundary-layer to the small normal displacement
velocities at the boundary-layer edge and caused by the waves. The wall-normal momentum
equation reduces to the statement that, in the basic TS wave, normal pressure gradients inside
the boundary layer are of secondary importance compared to streamwise gradients, at least
until spiking occurs. Close to the wall, writing y = εY , x = ε−1X, t = ε−2T with ε = R−1/4



238 R. I. Bowles et al.

the governing equations for [u, v] = [εŨ , ε3Ṽ ] and P = const + ε2P̃ (X) are, in normalised
terms,

ŨT + ŨŨX + Ṽ ŨY = −P̃X + ŨYY , (8)

ŨX + ṼY = 0, (9)

Ũ − Y → A, Y → ∞, (10)

P̃ = 1

π

∫ ∞

−∞
AS

X − S dS, (11)

where −A is a measure of the increase in boundary-layer thickness. The vertical velocities
at the edge of the boundary layer are −ε2AX , having grown from their smaller values close
to the wall, and it is the action of wall-normal pressure gradients outside the boundary layer
where y = O(ε−1) in reducing these to zero that generates the pressure P defined by (11).

Although the situation is clearly complicated by the finite Reynolds number and the large
wave amplitude it is clear from Figures 2(a) and 2(b) that the disturbances are approximately
governed by these equations in the sense that they capture the relevant physics and broad
structural features. In particular, the values of the vertical velocity grow towards the boundary-
layer edge before being reduced by the normal pressure gradients active outside the boundary
layer where they are comparable in magnitude with the streamwise gradients. Within the
boundary layer values of Py are significantly smaller. Finally the behaviour of the vorticity
contours across the bulk of the boundary layer suggests that this is being lifted as a whole in
response to the flow in the wall layer, a lifting which is another theoretical prediction at high
values of R. As mentioned in Section 3 the pattern in the contours of Py is consistent with
being caused by the streamline curvature due to this lifting.

The nonlinear inertial terms in (8) suggest that a wavebreaking singularity is possible, as
in the shallow water equations for example, [30]. From the theoretical viewpoint, it is this
singularity that governs the initial stages of the spike development after the initial growth of
the TS wave, the flow separation and the strongly nonlinear development of the streamwise
velocity profile away from its initial uniform shear Ũ = Y which are all governed by (8–11).
The shortening streamwise lengthscales associated with such a singularity would provoke
increasing values of wall-normal velocity, as seen in the computations. However, the large
values of P̃ then generated through (11) would at first sight disallow the singularity structure.
This was considered in [7] using the expansion

X −X0 = c(T − T0)+ (T0 − T )3/2ξ, (12)

[Ũ , (T0 − T )Ṽ ] = [Ū (Y ), 0] + (T0 − T )1/2[Ũ1(ξ, Y ), Ṽ1(ξ, Y )]+
(T0 − T )[Ũ2(ξ, Y ), Ṽ2(ξ, Y )] · · · ,

(13)

P̃ = P̃0 + (T0 − T )1/2P̃1(ξ)+ (T0 − T )P̃2(ξ)+ · · · (14)

in (8–11) as T → T0 the time of the singularity, occuring at streamwise station X0. Here
Ū is the local velocity profile at wave-breaking and has an inflection point at Y = Yc say
(Ū ′′(Yc) = 0, Ū (Yc) = c). The pressure is found to satisfy
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−a1(P̃1 − 3ξ P̃ ′
1)/2 + a2P̃1P̃

′
1 = µJ̃ ′ (15)

for a constant µ, which depends on the profile Ū , and where a1,2 are integral properties of
Ū . In the derivation of (15) some care must be taken over the flow in the critical layer (III),
centred about Y = Yc. This gives rise to the term J̃ (ξ ) which represents a jump in scaled
streamwise velocity across the layer. We consider this in more detail below, but, at these initial
stages of the spike generation, the critical layer dynamics have no influence on the pressure
development and in fact J̃ ′ is identically zero. The pressure is then determined by left-hand
side of (15) which is a well-known similarity form describing wave breaking. The vertical
velocity, increasing like (T0 − T )−1/2, is given by

Ṽ1 = −P̃ ′
1(Ū − c)

∫ Y

0

dv

(Ū (v)− c)2 . (16)

so that if Ū satisfies the finite-part integral condition∫ ∞

0

dY

(Ū − c)2 = 0, (17)

the vertical velocity, although not zero at the edge of the sublayer, at least does not grow
to attain the larger values at the edge of the boundary layer that generate the displacement
pressure and the singularity structure remains intact. The increasing pressure gradient does
have an influence at the wall in region IV, effectively a Stokes layer of thickness Y = O(T0 −
T )3/4, where a large wall vorticity (ŨY = O(T0 − T )−1/4) is generated due to viscous action
although, due to the still relatively small velocity perturbations, the dynamics is linear. The
large wall vorticity is seen in the computations as the first signal of spike formation. See
Figure 2(c).

It is difficult in practice to test the value of the finite-part integral in (17) from data obtained
from a numerical simulation or indeed from experiment (although see [8]) since to do so
requires an accurate knowledge of the higher derivatives of the velocity profile. However we
are able to look at the position of the inflection points that occur around x = 315 in the
simulation with R = 2500 (illustrated in Figure 2) and identify which is likely to be active in
the sense described above. Figure 7 shows the position of the inflection points present in the
flow at the initial stages of the spike development. A shear minimum and maximum are visible
downstream of x = 308. The minimum can be traced down towards the wall to the reduced
values of vorticity generated in the separated region further downstream. The maximum moves
outward. A second shear maximum/minimum is visible downstream of x = 314 at y = 0·6
approximately. The minimum rapidly moves outward with x and combines with the maximum
described above. The lower maximum remains. It passes through the region of increased v
values close to x = 315, y = 0·6 suggesting that it is this inflection point that is the relevant
one in the theory, entering into Equation (17) through the value of c and in the vicinity of
which Equation (15) may be expected to hold.

The theory captures well the initial stages of spike development, illustrated in Figure 2,
when wall-normal pressure gradients are small within the boundary layer. As the length scales
continue to shorten, due to the wave breaking influence described earlier and seen in Fig-
ure 2(c), new physics enters and, as in a nonlinear bore in shallow water, wave dispersion
may be expected to act to radiate the energy of wavebreaking into a wavetrain (see [31] in a
simple situation). This causes the appearance of the pressure maximum seen in Figure 3(b).
The details of the theory which describes this stage of development are presented in [9] and
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Figure 7. The vorticity and vertical velocity visualised as in Figure 2(a) with the position of inflection points in
the velocity profile indicated by a lines of filled circles.

summarised below. The governing equation for this process inside the boundary layer is the
Benjamin-Ono equation and it arises due to the action of normal pressure gradients. The
vertical velocity at the edge of region I, predicted by (16–17) is reduced to zero by normal
pressure gradients in a square region (II) extending just outside the viscous sublayer but buried
within the vertical scale of the boundary layer; see Figure 6. Here Ū is well approximated by
a profile with a scaled constant shear (equal to λ say) and v satisfies Laplace’s equation.
Note that this decay takes place within the scale of the boundary-layer and this region is
distinct from the region outside the boundary layer where the displacement velocity caused
by the wave itself decays. Over these scales normal pressure gradients are generated and
their streamwise variation gives rise to streamwise velocity gradients which, as the singularity
develops, strengthen and eventually enter the inertial balance (15). This fixes the shortened
streamwise lengthscale illustrated in Figure 6 and occurs when (T0 −T ) = O(ε). This implies
a new expansion with t = t0 + ε−1 t̃ , x = x0 + ct̃ + ε1/2x̃ for constants t0 and x0, and

[ε−1u, ε−3/2v] = [Ū(Y ), 0] + ε1/2[ũ1(x̃, Y, t̃), ṽ1(x̃, Y, t̃)] + ε[ũ2(x̃, Y, t̃ ), ṽ2(x̃, Y, t̃)] + · · · ,
(18)

ε−2P = p̃0 + ε1/2p̃1(x̃, t̃ )+ εp̃2(x̃, t̃ )+ · · · . (19)

This is substituted in the full equations (1–2), again with y = εY to obtain, similarly to (15),

a1p̃1t̃ + a2p̃1p̃1x̃ = 1

π

∫ ∞

−∞
p̃1ssds

x̃ − s + µJ̃x̃, (20)

with again µJ̃x̃ a contribution from the critical layer. This is to be solved with initial and
boundary conditions consistent with the solution of (15), which governs the flow at earlier
times and over longer scales where the influence wall-normal pressure gradients is less im-
portant. A solution to this system, with these conditions is given in Figure 8. Its similarity
to the wall-pressure distribution in Figures 3(b) and 4(b) is striking, taking into account the
influence of the secondary eruptions. This calculation is for µ = 0 but the distribution is
similar if µ/a1 < 0. If µ/a1 > 0, by contrast, then the system is ill-posed and a wave packet
of small-scale oscillations is seen, a point we return to below. The Korteweg-de Vries equation
which governs the shallow-water bore may be obtained in this context for the special case of
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Figure 8. The theoretical prediction for the streamwise pressure distribution obtained through a solution of (9)
and (10) with µ = 0 and suitable initial conditions. See [9]. Compare with the distributions in the simulations in
Figures 3(b) and 4(b).

symmetric disturbances in a channel. In this case the normal pressure gradient is generated by
a streamline curvature effect and gives rise to a term proportional to p̃1x̃x̃x̃ on the right hand
side of (20). This mechanism is also present across region I in the boundary-layer case and is
visible in the triangular structures in Figure 3(d). Its influence is theoretically less important
than the mechanism described above, being asymptotically smaller as R → ∞ although is
not clear which is in fact dominant at the Reynolds numbers considered in the simulations.

The calculation of J̃ proceeds as follows. The critical layer has thickness O(ε5/4) and we
write y = εYc + ε5/4ζ , with ζ of order one. If Ū ∼ c + b1(Y − Yc)+ b3(Y − Yc)3 + b4(Y −
Yc)

4 + · · · with bn constants, then we obtain

[ε−1u, ε−3/2v] = [c + ε1/4b1ζ,−ε1/2b−1
1 p̃1x̃] (21)

from the limit of the solution in I as Y → Yc. Expanding the local shear, which dominates the
vorticity, as

uy = b1 + ε1/2(3b3ζ
2 + 6b−2

1 b3p̃1)+ ε3/4(4b4ζ
3 + a13p̃1 + τ(x̃, ζ )) (22)

where a13 is a constant depending on integral properties of the profile Ū , and substituting into
the vorticity equation (3) gives

b1ζ τx̃ − b−1
1 p̃1x̃τζ = −6b−3

1 (b1b3p̃1t̃ − 2b4p̃1p̃1x̃ ). (23)

Now

J̃ = b−1
1

∫ ∞

−∞
τ dζ. (24)

and it may be shown (see [32]) that

µJ̃x̃ = 6b3b
−4
1 p̃1x̃

∫ ∞

−∞
(p̃1t̃ (s, t̃)+ a−1

1 a2p̃1p̃1s(s, t̃ ))ds

p̃1(x̃, t̃ )− p̃1(s, t̃)
. (25)

Here we have used the additional result that when (17) is first satisfied in the flow a1/a2 =
−b1b3/2b4. See [9].

As the dispersive effects first enter, the contribution to the momentum balance from the
dynamics in the critical layer begins to have an influence. However it has little qualitative
effect on the flow solution until regions are generated where p̃1x̃ is small, which subsequently
give rise to the pressure max/min being generated. From (21) the vertical velocity at the critical
level is −b−1

1 p̃1x̃ to first order and the generation of a pressure max/min leads to an alteration
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Figure 9. The flow at the critical level. The vortex is contained in the interval x̃L < x̃ < x̃R with χ = χ0
representing the separating streamline.

of sign in the vertical velocity with x̃ and hence to regions of recirculating flow or a rolling-
up spanwise vortex in a frame traveling with speed εc. The initial stages of this process are
described in [9, 12] who show it to be governed by a strong interaction between the effects
of normal pressure gradients and the critical layer jump term, J̃x̃ , leading to an explosive
growth in the size and length of the vortex. If µ, proportional to b3, is relatively small, in
contrast, corresponding to a relatively broad shear layer, [9, 10] show that the interaction may
be delayed until after the vortex has been formed. It is of interest to note that b3 is identically
zero as an inflection point pair is generated and that Figure 7 suggests that the spiking takes
place just downstream of such a generation. As a result, this special limiting case may be
relevant in these simulations. In this situation τ satisfies

τt̄ + b1ζ τx̃ − b−1
1 p̃x̃τζ = 0, (26)

with t̄ now denoting the relatively fast timescale (faster by a factor ε−1/4 than that over which
p̃1 develops) over which fluid particles enter and leave the critical level or, if captured and on
a closed orbit, recirculate within it. At high Reynolds numbers, viscosity does not have time to
act and (26) merely expresses the conservation of vorticity for any fluid particle in this locally
two-dimensional flow. The effects of J̃ on the subsequent flow development are detailed in
[10] where it is shown that it may give rise to a relative lengthening of the vortices. Here we
note that the paths followed by the particles satisfy dx̃/dt̄ = b1ζ , dζ/dt = −b−1

1 p̃1x̃ , i.e.,
d2x̃/dt̄2 = −p̃1x̃ which gives rise to closed trajectories upon which the vorticity is constant.
The vorticity is a function of χ = b1ζ

2/2 + b−1
1 p̃1 as seen in Figure 9.

Further comparison with the simulations suggests that there is in fact considerable diffusion
of the vorticity between closed streamlines in the simulations; indeed different critical-layer
dynamics may be active at the present computational Reynolds numbers. One possible situ-
ation is suggested in [33] which considers velocity profiles with the integral of (17) being of
O(ε1/2) instead of zero. The profile is then marginally unstable to a range of relatively long
Rayleigh waves which grow on a timescale similar to that of theO(ε1/2)-sized disturbances to
the TS pressure profile considered in (19). For smaller O(ε) amplitude disturbances, the non-
linear streamwise inertial effects are reduced so that the pressure equation (20) is linearised.
The critical-layer dynamics remain nonlinear but the layer is thinner and as a consequence
becomes unsteady and viscous and of a type studied by [34], for example which examines the
nonlinear development of a single wave mode. In the present context however all wave modes
are active and interact through the critical-layer-jump term in (20). The large-time solutions
are similar to those studied by [34] with the jump governed by a balance of unsteady and
viscous dynamics inside the critical layer and the initial exponential growth reduced to slower
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algebraic growth through viscous saturation. The large-time wave form is not sinusoidal but
depends on the flow parameters. Certain solutions exhibit relatively long vortices separated
by short-scaled peaks in the pressure, very similar to the flow pattern seen in Figures 4(c–e).

We now consider the secondary eruptions illustrated in the simulations of Figure 5. The
theory here considers pressure gradients of a magnitude such that the wall layer (IV) is linear.
As amplitudes increase or scales shorten, as a result of the generation of vortices discussed
above, the full inertial terms become active. Although the theoretical details are not yet clear
and are the subject of current investigation, it seems likely that the process described earlier in
this section may be repeated but on a shorter scale as part of a cascade. One point of interest is
that, as noted in the discussion of Figure 7, the inflection point of relevance in these secondary
eruptions is a vorticity minimum. This corresponds to a change in sign in b3 and hence µ for
which the theory predicts a wave-packet of rapidly growing, small-scale pressure oscillations
which may explain the oscillations seen in Figures 4(b) and 5(b).

5. Discussion

As mentioned in Section 1 the above theory is expected to be of relevance to unsteady sep-
aration as well as transition. Indeed Figures 3(a) and 4(a) suggest that the large amplitude
TS disturbances we consider could be viewed as a series of developing vortices travelling
downstream through a flat plate boundary layer. The spiking behaviour and its description and
explanation may then be considered in the context of secondary separation and secondary-
vortex generation. Computations of such processes forced by a single fully-developed station-
ary vortex exterior to a boundary layer have been carried out by [14, 15]. The flow structures
they find are very similar to those here and suggest that similar detailed comparisons with
the present theory could be made and that the processes described in this paper are similar
to the so-called large-scale interaction described by [15]. There are intriguing differences
nonetheless: first, the processes that would appear to correspond to our secondary eruptions
occur before those corresponding to our secondary vortex generation; second, this short-scaled
development arises in a region of reversed flow in their context. These two features may be
connected in that the second, taken together with the property that the exterior vortex is sta-
tionary, suggests that the value of c in (17) is small. The developing disturbance is then hardly
advected downstream and a stronger interaction with the wall layer (IV) is to be expected,
perhaps occurring before the incursion of the dispersive terms which we have shown to be
responsible for the generation of secondary vortices. This observation might well explain the
first feature, making a study of small c values worthwhile.

The approach described in Section 4 has been successful in clarifying the complicated
mechanisms and structures at work in the two-dimensional simulations of Section 3 and in
identifying the physical approaches behind them. In addition the extensions and limiting cases
mentioned which build upon this basic approach promise to shed more light upon the process,
and we have claimed that these structures are related to those seen in computations of unsteady
planar separation and caused by similar mechanisms. There is somewhat less detailed agree-
ment with experimental and simulated studies of TS wave transition because of the strongly
three-dimensional nature of the late stages of that process. There are broad similarities be-
tween the two- and three-dimensional cases however. These include the obvious importance
of critical layer dynamics and vertical velocity distributions in vortex formation and, more
fundamentally, the associated reduction in length-scale. The theory identifies a mechanism,
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clearly active in two dimensions, through which normal pressure gradients, which enter as the
scales shorten, can act to generate pressure maxima and minima which directly induce the
vortices. These similarities indicate that an extension of the theory to cover three-dimensional
influences is worth pursuing. Such an extension is at present underway by Mr. J. Marshall
at University College London who is investigating the effect of a spanwise pressure gradient
in generating a significant spanwise velocity w of size O(ε13/8) in the critical layer over a
spanwise lengthscale O(ε9/8), measured by z̃. This can act to intensify the vorticity through
the vortex-stretching mechanism. In essence the vorticity at the critical level, τ(x̃, ζ, z̃), is
governed by the pair of equations

b1ζwx̃ − b−1
1 p̃1x̃wζ = −p̃z̃, (27)

b1ζ τx̃ − b−1
1 p̃1x̃τζ = wz̃ − 6b−3

1 (b1b3p̃1t̃ − 2b4p̃1p̃1x̃ ). (28)

As before, the jump J̃ (x̃, z̃, t̃ ) is obtained by integrating τ in ζ and interacts with p̃1 through
(20). One important result from this work indicates that, even for initially mild spanwise vari-
ations, as the pressure max/min is generated the three-dimensional influences on the critical-
layer jump dominate over the two-dimensional influences described in this paper.
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